Allegro: GPU Simulation Acceleration for Machine Learning Workloads

Euijun Chung, Seonjin Na, Hyesoon Kim

HPArch (High Performance Architecture Lab) @ Georgia Tech

GPUs and Architectural Simulators

IPC Cache Hit Rate Num of Instrs Memory Access TLB Hit Rate

• • •

Source: <u>https://www.nvidia.com/en-us/data-center/h100/</u> "Attention is all you need", NeurIPS 2017

Motivation: GPU Simulators are too slow

TABLE IThroughput and Slowdown of GPU simulators.

	Real GPU	Macsim	GPGPU-Sim	MGPUSim
Simulation	4103750	50.5	12.5	27
Rate (KIPS)				
Relative	328300	4.04	1	2.16
Throughput				
GPT-2:	0.925 sec	20.88 hrs	3.52 days	1.63 days
Generate				
100 tokens				

*Real GPU: RTX 2080

- → A few days to generate one sentence with 100 tokens with GPT-2
- → Reducing the workload size is a huge problem to solve
- → Allegro's solution: **Kernel-wise Sampling** with execution statistics

Observations: 1. High Homogeneity

TABLE II					
TOP 5 TIME-CONSUMING GPU KERNELS IN RESNET50 [14] WORKLOAD.					
Kernel Name	# Calls	Total Time (ns)			
cudnn_infer_volta_scudnn_winograd_128x	19625	1185625785			
explicit_convolve_sgemm	3925	964880834			
cudnn_infer_volta_scudnn_winograd_128x	7850	897755249			
volta_sgemm_128x64_nn	23550	709594145			
winograd::generateWinogradTilesKernel	7850	595149925			

- ✓ Highly repeated kernel calls
- ✓ Good opportunity for **efficient sampling**

Observations: 1. High Homogeneity

TABLE II					
TOP 5 TIME-CONSUMING GPU KERNELS IN RESNET50 [14] WORKLOAD.					
Kernel Name	# Calls	Total Time (ns)			
cudnn_infer_volta_scudnn_winograd_128x	19625	1185625785			
explicit_convolve_sgemm	3925	964880834			
cudnn_infer_volta_scudnn_winograd_128x	7850	897755249			
volta_sgemm_128x64_nn	23550	709594145			
winograd::generateWinogradTilesKernel	7850	595149925			

- Kernel names on the top of each subplot.
- Red dotted lines are normal distribution with same mean and variance.
- ✓ Narrow execution time distributions
 → Clustering & Sampling

Applying Central Limit Theorem (CLT)

Central Limit Theorem.

Let $\{X_1, ..., X_m\}$ be a sequence of *m* independent and identically distributed (i.i.d.) random variables following $N(\mu, \sigma^2)$.

Then, the sampled mean converges to $N(\mu, \sigma^2/m)$ as $m \to \infty$.

Applying Central Limit Theorem (CLT)

Central Limit Theorem.

Let $\{X_1, ..., X_m\}$ be a sequence of m independent and identically distributed (i.i.d.) random variables following $N(\mu, \sigma^2)$.

Then, the sampled mean converges to $N(\mu, \sigma^2/m)$ as $m \to \infty$.

✓ Can we ensure i.i.d.-ness of GPU kernels?

Observations: 2. Cache-Unfriendliness

GPU Cache Hierarchy.

Source: https://cvw.cac.cornell.edu/gpu-architecture/gpu-memory/memory_levels

✓ Cache Flushing between kernel calls
 → No difference in the L1 hit rate
 → Small difference in the L2 hit rate

Allegro's sampling algorithm

error := execution time difference between **full** and **sampled simulation** $m_{min} :=$ minimum # of samples s.t. **error** < **error bound** ϵ . For 95% confidence, m_{min} to ensure **error** < **error bound** ϵ :

$$m_{min} := max \left\{ \left\lceil \left(\frac{1.96}{\epsilon} \frac{\sigma}{\mu}\right)^2 \right\rceil, 30 \right\}$$

Where μ = mean and σ = stdev of execution times.

- \rightarrow **Clustering**: Compare m_{min} with a threshold recursively.
- → Sampling: Randomly sample m_{min} kernel calls from each cluster.

Evaluation Setups

GPU: Nvidia RTX 2080 (Volta architecture), CUDA 11.8 HW Profiler: Nsight-Systems

List of used workloads:

- 7 Transformer/CNN based models
- Python-based implementations from HuggingFace

	-	
Name	# Kernels	Workload Description
Bert	1858800	Performing sequence classification on 10,000
		premise/hypothesis pairs using the BERT-
		Medium-MNLI model.
Bloom	51834362	Generating 1,000 sentences, each with a length
		of 100 tokens, using the Bloom model.
Deit	792850	Classifying 3,925 ImageNet datasets using
		the Data-efficient image Transformer (DeiT)
		model.
Gemma	9079126	Generating 1,000 sentences, each with a length
		of 100 tokens, from the GEMMA language
		model.
GPT-2	34981000	Generating 1,000 sentences, each with a length
		of 100 tokens, from the GPT-2 model.
Olmo-bitnet	2544766	Generating 10 sentences, each with a length of
		100 tokens, from the OLMo-Bitnet language
		model.
ResNet50	2812741	Classifying 13,400 ImageNet datasets usipg
		the ResNet50 model.
<u>.</u>		

Evaluation: Speedup and Error

Evaluation: Comparison

Random Sampling:

Randomly sample kernels until achieving the same speedup as Allegro

Limitations

✓ **Homogeneity** and **i.i.d.** assumptions:

The error may exceed the error bound ϵ

- ✓ **Non-ML workloads** with small number of kernel calls:
 - Ex) Rodinia Suite: typically involves only a few kernel calls
- ✓ **Cache** warm-ups effects:

Applies to all methodologies aiming for speed-up by sampling

Allegro's contributions

1. Analysis of the **latest ML workloads**' characteristics on GPUs **Homogeneity** and **cache-unfriendly** nature

2. Propose a **statistical approach** to effectively reduce the workload size Central Limit Theorem (CLT) for calculating **error bounds**

Propose clustering and sampling method for ML workloads
 ~922x performance boost with high accuracy (0.057% error)
 Tested 7 latest ML workloads on Macsim

Summary of Allegro

- ✓ **Homogeneous** and **cache-unfriendly** nature of ML workloads
- ✓ **Sampling** based on i.i.d. behavior of GPU kernels
- ✓ **Statistical bounds** on sampling errors
- ✓ GPU Simulation with **7 latest ML workloads**

- Euijun Chung, Seonjin Na, Hyesoon Kim
- HPArch (High Performance Architecture Lab

